Data from an experiment may result in a graph indicating exponential growth. This implies the formula of this growth is \(y = k{x^n}\), where \(k\) and \(n\) are constants. Using logarithms, we can ...
If \(f(x) = x^2\), then \(af(x) = a(x^2)\). This tells us that we need to multiply each of the \(y\) coordinates on the graph by \(a\) in order to stretch the original graph. Looking at some ...
This is a preview. Log in through your library . Abstract A class of global Lyapunov functions is revisited and used to resolve a long-standing open problem on the uniqueness and global stability of ...